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Methods for global optimization of a parameter set as
judged against some objective function are particu-
larly relevant to the problem of optimizing a model
against a set of diffraction data. There are many
methods available for refining a model once in the
neighbourhood of the desired minimum which take
only downhill steps. However, methods which can
escape the neighbourhood of a local minimum and
locate the best solution are less common, an example
being a simple grid search. This is usually too expen-
sive in terms of the number of function evaluations
required for problems involving more than a few
variables. Other methods include simulated anneal-
ing and the so-called genetic algorithms.

The Torus algorithm (Rabinowitz, 1995) is a sto-
chastic method which uses only function evaluations,
no derivative calculations are required. The algo-
rithm employs random shifting of variables within
two different schemes for limiting the maximum
range of those shifts. Initially, the ranges of the vari-
ables are defined by lower and upper bounds sup-
plied by the user. Thereafter, in the controlling func-
tion, the variables are sequentially bumped around
the set which currently gives the lowest function

value, the range of the bumps decreasing exponen-
tially with a low decay constant (slow cooling). The
controlling function calls two routines for minimiz-
ing the objective function about the bumped variable
set, one which applies random shifts to all variables
and one which applies shifts to only one variable at a
time. Both these routines reduce the maximum range
of the shifts logarithmically (rapid cooling) from the
ranges modified by the controlling function. The
shifts are also constrained by a cutoff value for each
variable supplied by the user. In the controlling tunc-
tion, a multiple of the cutoff value is used as the min-
imum size of the range. In the minimization routines,
the cutoffs provide the minimum magnitudes of the
random shifts. Therefore, the cutoffs can be thought
of as defining minimum starting and finishing tem-
peratures for the minimization routines. The imple-
mentation of this method investigated here was writt-
ten in C from pseudocode published in Rabinowitz
(1995).

A simple function with many local minima was used
to investigate the efficacy of the Torus algorithm,
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where 7 is the number of dimensions and £ is a
weighting factor between the quadratic term which
defines the global minimum and the periodic term
which introduces the local minima. It is clear by
inspection of the function that the global minimum
has a value of 0 and is situated at x,=0 for i=1,n. The
family of next lowest minima have a value of

TORUS REPLEX
No. of Av. global | Av.no.of | Av.global | Av.no.of
n,k global minimum function minimum function
L minima calls | calls
2,400 15 26.99 8054 5.47x10°° 120
2,200 32 19.14 8104 5.01x10° 114
2,100 49 9.35 8585 493x10? 100
10, 400 14 0.013 143082 1.79x10°6 592
10, 200 26 7.34 149014 3.52x1076 607
10, 100 47 550 | 156182 | Liax104 | 591

Table 1 Each combination of n and & was tested 100 times. The averages of the number of functions calls were calculated over all

trials, not just those in which the neighbourhood of the global minimum was located.
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approximately 27* and occur when two of the x=+mn
and the rest are equal to zero. The starting set for
each trial consisted of x,=12r and x,=0 for i=2,n with
the range for each variable being -50 < x, < 50. The
cutoff value applied for each dimension was
Ax=0.01. A representation of the function is shown in
figure 1. Control parameters for the algorithm were
left at their default values.

Each test consisted of 100 trials of the algorithm for
a particular n and k. In order to clearly identify the
neighbourhood of the local minimum into which the
result of the Torus algorithm fell, each application
was followed by refinement by a modification
(REPLEX) of the downhill simplex method (Nelder
& Mead, 1965), in which the variable set is parti-
tioned to form groups with similar shifts. The results
of these tests are summarized in table 1. The results
of the trials for n=2 are shown graphically in figure
2

As can be seen from table I, the Torus algorithm
requires far more function evaluations than the
downhill simplex method to reach convergence.
However, it has the great advantage that in a fair pro-
portion of the trials, it successfully locates the neigh-
bourhood of the global minimum, whereas, from the
same starting point, the downhill simplex method
would barely move. The downhill simplex method
comes into its own when used to refine solutions sug-
gested by the Torus algorithm. One can also compare
the efficiency of the algorithm to a grid search in
increasing the dimension of the problem. The scaling
of the number of function evaluations for n=2 to
n=10 is approximately 18 with little or no loss of
efficiency in finding the global minimum. The num-
ber of function evaluations required by a grid search
for n=10, assuming the same number of evaluations
as the Torus algorithm for n=2 (corresponding to a
step size of 1.13 in each dimension), is approximate-

ly 3.3x10%, a scaling of 4.1x10". Even though the
Torus algorithm cannot guarantee to locate the glob-
al minimum, it seems to offer a considerable advan-
tage over a grid search for a problem of more than 1
or 2 dimensions. As with any non-trivial method of
finding a global minimum, the algorithm has a num-
ber of control parameters which can be tuned to suit
the problem at hand. This tuning is in itself a tricky
optimization problem which has not been explored
here.
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Figure 1 (a) shows a colour-contour representation of the test
function for n = 2, k = 400, the limits in both dimensions being
-50 to 50. The central global minimum is marked with a white
dot as is the starting point to the right of the centre. (b) shows a
slice through the centre of the surface with x, = 0. The central
global minimum and the starting point are marked with vertical
lines.
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Figure 2 This shows the results of the trials for n = 2. The central portion of the function surface is shown (-4 < x,,x, < 45) with
the resulting coordinates of the Torus algorithm on the left and the subsequent downhill simplex refinement on the right. (a) k=
400 (b) k=200 (¢) k=100 i






